Difference between intrinsic and characteristic impedance Hi
For a plane wave propagating in a source free, lossless dielectric medium, the wave impedance formula sqr[mu/eps] describes the ratio of E to H fields.
In an ideal transmission line (TEM mode assumed here), the E and H fields propagate perpendicular to each other, and so the WAVE IMPEDANCE (The ratio E/H at any given point in space within the TL), is also defined by sqr[mu/eps].
In TL theory we work with "voltage and current", defining their ratio as the "Characteristic impedance of the transmission line": Zc=V/I.
But "V" and "I" are DERIVED QUANTITIES, derived from the fundamental E and H fields by means of line integrals of those fields in the transversal section of the TL, plus boundary conditions, like Vo and Io as applied currents or voltages. (Check the excellent paper by Dr. Williams or other references like Ramo, Pozar, Harrington etc.)
Thus "V" and "I" depend on the geometry and materials conforming the transmission line, and their ratio may or may not equal the quotient E/H. Thus the TEM wave impedance is equivalente to the plane wave impedance for a similar medium, but wave impedance and TL's characteristic impedance can differ.
And this is only for the TEM mode... If you start to consider TE, TM or hybrid modes, more and more "impedances" show up. And there are many situations (e.g.:In a hollow rectangular waveguide) where the derivation of V and I themselves as integrals of E and H fields is not straitforward, or even unique.
Regarding the microstrip, the fundamental mode is not a pure TEM but a quasy-TEM mode: Permitivities differ in substrate and air, and thus there are longitudinal E and H fields to maintain continuity. Nonetheless, for lower frequencies this longitudinal components can be neglected and the static solution is taken as the spatial distribution of E and H. You can compute from this field distribution the C and L values of your transmission line.(e.g.: Pozar, 3.8)
Hope this helps.
Iban