3dB Hybrids tc replied the topic: 3dB Hybrids
The quadrature property of the coupled lines is a subset of the amazing properties of lossless, symmetric four-port microwave circuits. For double symmetry circuits (like two coupled lines or a hybrid coupler) the 16 S-parameters of the scattering matrix of the four-port reduce to 4 independent S-parameters: S11, S12, S13, S14.
Because the circuit is lossless (no heat or radiation losses), conservation of power is applicable to the four ports. This means that the multiplication of the scattering matrix by its complex conjugate transposed matrix will be equal to the unity matrix. This results in 16 equations - one for each element of the unity matrix. 12 of these equations are not independent and are just variations of the first four. So the 16 equations reduce to four complex equations involving the four complex S-parameters: S11, S12, S13, S14.
Go to www.microwaves101.com/encyclopedias/1158...metric-coupled-lines if you would like to see the
detailed four simplified equations.
If you simply by assuming S11=0 (and by symmetry S44=0) and assume S12 and S13 are non-zero, then the phase difference between
S12 and S13 is pi/2 exactly.
All the lossless symmetric four-ports in the world must satisfy these equations. Let’s just look at one of those circuits – a two line coupler. From the even and odd mode analysis provided by Microwaves101.com, if the values of Zoo and Zoe satisfy the equation Z0*Z0=Zoo*Zoe , then S11=0 (and by symmetry S44=0) and the four equations reduce to two equations.
If you assume that S12 and S13 are non-zero, then the phase difference between S12 and S13 is pi/2 exactly.
This is true for all frequencies, for any value of coupling and for any length of the coupled lines! If you don’t believe this, then plug into AWR Microwave Office and it will compute that S11 and S44 have a return loss and isolation greater that 300dB over the frequency range from 1 to 200 GHz Then the phase difference between S12 and S13 is pi/2 exactly regardless of the length of the coupled lines. For more information on this approach to the properties of a lossless 4-port, check out the textbook by Mongia, Bahl & Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, 1999, pp 40-46.